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Hurricanes strike the coast along the Gulf of Mexico and eastern Seaboard of the 

United States annually.  With each hurricane that makes landfall there is potential for 

significant damage and destruction with the majority of coastal devastation occurring 

from storm surge.  It is accepted that hurricane strength, classified by the Saffir-Simpson 

scale, and storm surge height are directly proportional.  However, this scale may prove to 

be a false representation of the height of storm surge, especially according to location of 

landfall.  This study will discuss the correlation between category 2, and greater, 

hurricanes and corresponding storm surge heights between the Gulf Coast and Atlantic 

Coast.  Through this research it shows that there is a variation in storm surge height 

between regions, concluding that the Gulf Coast is prone to higher surge heights than the 

Atlantic for like-category storms. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

 Hurricanes strike the coast along the Gulf of Mexico and Eastern Seaboard of the 

United States many times annually.  With each hurricane that makes landfall, there is 

potential for significant damage and destruction, especially through rapidly-growing 

coastal regions where damage could be exacerbated by population density (Pielke and 

Landsea 1998).  Most coastal devastation from a hurricane is caused by storm surge 

(Hoover 1957) and it is generally accepted that hurricane strength and storm surge height 

are directly proportional (Coch 1994).  Whereas, a hurricane’s strength is classified by 

the Saffir-Simpson Hurricane Scale; the Saffir-Simpson scale divides hurricanes into five 

categories based upon wind speed, with category 1 being the weakest and category 5 

being the strongest (Saffir 1977; Simpson and Riehl 1981).  However, this scale 

imperfectly correlates with the height of a storm surge, which can consequently lead to 

underestimated projections of potential damage to an area.  See Table 1.1 for the Saffir-

Simpson scale wind speed to predicted storm surge. 
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Table 1.1   Saffir-Simpson Hurricane Scale 
 

Category 
Wind Speed 

(mph) 

Storm Surge 

(ft) 

1 74-95 4-5 

2 96-110 6-8 

3 111-130 9-12 

4 131-155 13-18 

5 ≥155 ≥18 

 

 Although some of the costliest hurricanes have been category 4 or greater, this 

does not denote that storms of lesser strength should be considered less destructive.  For 

example, Hurricane Katrina (2005) was a category 3 hurricane at landfall, yet, it was the 

costliest hurricane recorded in the United States, at an estimated $200 billion (Knabb et 

al. 2006).  When predicting damage potential associated with storm surge, the Saffir-

Simpson scale can be misleading, thus specific variables that enhance or contribute to 

storm surge height should become the most important factors under review.  Therefore, 

the scientific scale on how to best describe the destructive potential of hurricanes must be 

reevaluated and altered.  Powell and Reinhold state that factors like bathymetry, surface 

roughness, storm motion, and coastline shape should be individually considered, and 

further studied, as variables in a scale used for destructive potential.   

This study seeks to identify one of these factors, coastal geography, as a primary 

variable to be considered when determining potential damage caused by resulting storm 

surge.  Storm surge heights will be compared between the Atlantic Coast region and the 

Gulf Coast Region for like-category storms ranging from category 2 to category 5.  In 

addition, the variability of storm surge heights between category 2 and category 5 storms 

will be determined for each region.  The possibility of elevated water levels in the Gulf of 
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Mexico region due to wave propagation from tropical cyclones has been noted (Cline 

1920).  This assertion was made nearly 90 years ago and the idea must be re-visited in 

order to start assessing the validity of the Saffir-Simpson scale as a proper tool of 

measure for potential storm damage. 

 The objective of this study is to show the relationship between coastal geography 

and storm surge height by studying category 2, 3, 4 and 5 hurricanes, based on the Saffir-

Simpson hurricane scale. This study will exclude category 1 storms because of their 

relatively low surge heights and minimal damage.  

According to Bush (2001), the Saffir-Simpson hurricane scale reflects the strength 

of a hurricane over the ocean; however, the scale is less adequate in reflecting the effects 

of a hurricane on the coast at landfall.  It is anticipated that this research will help to 

identify regions prone to higher storm surge in order to provide better projections of 

potential damage to an area and to lead to better-informed and more quickly evaluated 

evacuation orders and evacuation deliberations.  

The hypothesis for this study is that the Gulf Coast Region is the most vulnerable, 

and prone to higher storm surge heights, due to the coastal geography of this region.  The 

concave coast of the Gulf of Mexico acts to trap and push water inland by converging it, 

and the gradual incline of the shallow ocean floor does nothing to hinder wave energy.  

Conversely, the Atlantic Coast is less likely to encounter extreme storm surge heights 

because the ocean water can be dissipated back into the open seas and the shelf-like 

bathymetry reduces the momentum and energy of ocean waves 
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Ultimately, it will be determined if storm surge heights produced by like-category 

storms vary between the Atlantic Region and the Gulf Coast Regions for all Category 2, 

3, 4, and 5 hurricanes from 1969—2005.  Also, the variation in storm surge heights 

between categories for each region will be noted. 
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CHAPTER II 
 

LITERATURE REVIEW 
 
 
 A storm surge generated by a hurricane is known to be the most destructive part 

of the storm (Hoover 1957), yet more research must be conducted to gain a better 

understanding of which variables are most important in determining storm surge height. 

The following literature review defines variables necessary for hurricane development 

and intensification, variables contributing to storm surge height, modeling tools used to 

determine surge height, population, which increases costs associated with storm surge, 

and brief storm summaries for storms used in this study. 

Hurricane Development and Intensification 

Warm Sea Surface Temperatures 

 
 It is generally accepted that sea surface temperature (SST) is an important 

environmental variable to consider when studying hurricane development and 

intensification.  In fact, storm intensity has been shown to vary directly with the mean 

SST (Landsea 1993).  Additionally, DeMaria and Kaplan (1994) made a direct 

correlation between SST and hurricane wind speeds as a factor contributing to the 

intensification of a hurricane.  Palmén (1948) proposed that vertical instability, in the 

atmosphere above the Atlantic Ocean, was a necessary condition for the formation of 
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hurricanes and concluded that hurricanes only form in regions where the SST is greater 

than 26° C.  Moreover, Korolev et al. (1990) and Pudov (1992) observed that the contrast 

between the sea temperature and air temperature (sea-air temperature), for two tropical 

storms, increased from 1°C to 6°C as surface wind speed increased from 12 to 25 ms−1.  

Korolev et al. (1990) and Pudov (1992) suggest that, not only SST, but also the 

relationship between the sea-air temperatures plays a role on the surface wind speed.  

Carlson (1971) shows that seasonal hurricane activity is correlated with varying sea 

surface temperatures.  

Weak Vertical Wind Shear 

 Weak vertical wind shear is a favorable environmental factor for hurricane 

development (Gray 1968) since weak vertical wind shear allows for a stronger core of the 

hurricane (Frank and Ritchie 1999).  Wind shear values of less than 10 ms−1 favor 

intensification, whereas shear values greater than 10 ms−1 are associated with weakening 

(Paterson et al. 2005).  A highly sheared environment tends to disrupt the structure of a 

hurricane's eyewall, whereas more uniform winds allow a hurricane to grow to maximum 

potential (Nash et al. 2003). 

Placement of Subtropical Anticyclone 

 The subtropical anticyclone, or Bermuda High, is a semi-permanent feature in the 

Atlantic Ocean and is responsible for the general circulation of the atmosphere (Asnani 

2005).  Subtropical anticyclones tend to move north-south and east-west with seasonal 

changes.  Although there is a two to three week lag time involved, subtropical 

anticyclones move south beginning in early July, just following the summer solstice 
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(Asnani 2005).  The subtropical high promotes hurricane intensification by effectively 

lessening the vertical wind shear.   Thus, it is reasonable to suggest that hurricane 

intensification and direction are strongly influenced by the placement of the subtropical 

anticyclone’s southward.  

Storm Surge 

 

 SST, vertical wind shear, and placement of the subtropical high are the primary 

influences for tropical cyclone development and intensification, however, storm surge 

generation is influenced by several other factors. The physical and environmental 

variables that contribute to the formation and propagation of storm surge are wind speed, 

central pressure, shelf slope, shoreline configuration, and human effects on shorelines 

(Coch 1994).  Although storm surge is a result of several environmental variables, studies 

suggest that the most important variable contributing to storm surge height is pressure 

and, subsequently, wind.  While storm surge is a function of pressure, the maximum 

surge does not occur under or near the eye of the hurricane where pressure is lowest.  

Instead, maximum storm surge heights occur in the right, front quadrant of the hurricane 

where the wind speed is the greatest (Coch 1994).  Strong onshore winds cause water to 

build up along the coast, and when this occurs in conjunction with a naturally occurring 

high tide, coastal defenses can be breached (Amedo 2005).  Storm surge is a good 

measure of a hurricane's energy flux at the shoreline as opposed to a hurricane’s overall 

strength or intensity, based on the Saffir-Simpson hurricane scale (Bush 2001). 

Therefore, it is important to investigate coastal features, which can enhance storm surge 
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height, and not rely solely on the Saffir-Simpson hurricane scale as an indicator for 

coastal destruction. 

Models 

 Due to the lack of measured or true storm surge data availability, computer 

models are currently used to model storm surge heights.  Models are an important tool for 

scientists and engineers, however, models are not easily accessible, or understood by the 

public.  The public can better relate to and recognize categorical divisions of storms.  

Inherently, models are not the most favorable form of data or the most accurate.  

Although the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model is the 

most notable and widely used, other models such as the Advanced Circulation (ADCIRC) 

and High Resolution Surge Model (HRSM) are also utilized to determine storm surge.  

The following section will briefly describe these models, benefits, and constraints of 

each.  

 The oldest and most widely used model for storm surge data is the SLOSH 

Model. Although the SLOSH Model has been tested extensively and commonly used, the 

resolution is limited.  Also, the SLOSH Model is not the most ideal tool to determine 

storm surge due to limited input about the storm intensity and structure, and SLOSH has 

difficulty simulating convoluted shorelines (Houston et al. 1999). Such features include 

barrier islands, similar to those located across much of the Central Gulf Coast Region, or 

large bays, such as Mobile Bay in Mobile, Alabama.  In addition, it is difficult for the 

SLOSH Model to incorporate features that block or accelerate storm surge flooding and 

neglects to incorporate astronomical tides (Zhang et al. 2008).  
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Despite the recent development of the ADCIRC, it is capable of producing more 

accurate model output than SLOSH. This is due to the fact that the ADCIRC Model 

domain is extremely flexible and its resolution is much finer than the SLOSH Model. 

Furthermore, the ADCIRC model simulates convoluted shorelines reasonably well and it 

can also incorporate features such as small as highways and canals that can affect the 

acceleration of a storm surge (Luettich and Westerink 2004).  The output for a numerical 

model like ADCIRC is dependent on reliable wind and pressure field inputs along with 

proper bathymetric and land elevation models (Demirbilek et al. 2008). 

 Lastly, much like the ADCIRC model, the HRSM model is not as widely used 

and is a recent technological advancement designed to improve storm surge modeling.  

Like the ADCIRC, the HRSM can simulate convoluted shorelines and take into account 

physical coastal features. Unfortunately, model output is not widely available and is not 

easily accessible. 

Coastal Population Growth 

 It is important to note coastal population growth because, as suggested by Pielke 

and Landsea (1998), the increasing coastal population only exacerbates the potential for 

damage caused by hurricanes.  According to the United States Census Bureau, coastal 

population increased by 23.6 million between 1980 and 2005; in 2003, an estimated 153 

million people (nearly 53 percent of the population) lived in coastal counties (Crossett et 

al. 2004).  This increasing coastal population density coupled with the fast-growing 

economy of coastal areas increases the risks and dangers associated with hurricanes and 

storm surge.  If this trend continues, its economical impacts will pose immense 
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challenges for coastal communities when threatened by natural disasters such as 

hurricanes (Perkins 2004).   

Hurricane Summaries 

 The following summaries include all hurricanes that made landfall as a category 2 

storm or greater in the United States from 1969—2005 and storms with inadequate surge 

data for this project were discarded.  

Camille 1969 (Simpson et al 1970) 

 Hurricane Camille started as a tropical wave off the coast of Africa on 5 August 

1969, during a time when flow patterns at the mid-latitudes were more zonal and the 

subtropical high was more persistent.  This combination, noted by Simpson and Sugg, 

1969, of the National Hurricane Center, appeared to control the intensity of tropical 

cyclones during the 1969 season rather than the formation.  

On 9 August, cloudiness associated with the disturbance began to take on circular 

form.  The storm remained without a defined center of closed circulation until 14 August, 

where reconnaissance aircraft reported a central pressure of 991 mb.  On 15 August, as 

the storm reached the western tip of Cuba, the central pressure dropped to 964 mb with 

winds near 52 ms-1.  Officially a hurricane, Hurricane Camille rapidly intensified over the 

next 48 hours with the central pressure dropping to 905 mb by early evening 16 August.  

Substantial inflow and assistance of a high-speed, northward-moving current contributed 

to the rapid intensification and maintenance of Camille’s strong mass circulation.    

 Trends indicated landfall somewhere near Panama City, Florida, and warnings 

were issued for most of the Florida panhandle. Hurricane Camille barreled toward 
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Clermont Harbor, Waveland, and Bay St. Louis, Mississippi near midnight 17 August, 

much farther west than previously forecasted.  As of 1969, Hurricane Camille had the 

highest recorded wind speed, central pressure, and storm surge.  

 With a central pressure of 905 mb, winds in excess of 90 ms-1 at landfall, and 

storm surge heights over 7.32 meters, it is not a wonder that over $1 billion worth of 

damages occurred from this storm.  Luckily, there was less loss of life per million dollars 

of damage than any other Atlantic storm. 

 Celia 1970 (Simpson and Pelissier 1971) 

 A small, typical, late July wave moved off the African coast and six days later 

became a depression of the Caribbean Islands.  Here the light wind shear allowed this 

small area of convection to start growing and a well defined eye was reported on 31 July.  

Depression status was maintained as it moved toward the northern tip of Cuba.  Once the 

depression emerged into the Gulf of Mexico, rapid intensification occurred.  It was noted 

that the development was eerily similar to Hurricane Camille.  After interaction with the 

Yucatan Peninsula, weakening occurred.  Although most indicators suggested that Celia 

would maintain her status until landfall a second reintensification occurred just 8 hours 

prior to landfall.  

 Celia made landfall near Corpus Christi, Texas with the highest storm surge 

values of 2.80 m recorded at Aransas Port and Rockport.  Sustained winds were between 

31 and 36 ms-1.  Although Celia was a category 3 storm at landfall, it was classified as 

one of the costliest storms at over $444 million. 
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Edith 1971 (Simpson and Hope 1972) 

 The only major hurricane of 1971, Edith, started as a cluster of clouds that formed 

within the Intertropical Convergence Zone (ITCZ) on 2 September.  Over the next few 

days it appeared that the storm diminished due to the cloud cover in the ITCZ.  After 

moving out of the ITCZ it was clear that a well defined area of a circulation existed and a 

tropical depression had formed.  By 7 September Edith became a category 1 hurricane.  

As it moved westward towards the country of Honduras there was little change in the 

strength and direction.  Suddenly though on 9 September, just hours before making 

landfall on Cape Gracias, it quickly intensified from a minimal hurricane to a category 5 

storm and there were environmental elements present when Edith strengthened, similar to 

Camille (1969) and Celia (1970).  It is suggested that a release of energy at the upper-

level is responsible for the rapid strengthening of these storms.  After remaining over 

land for multiple days, Edith lost its hurricane status.   

 Edith, yet again a tropical storm, drifts northward toward the Yucatan peninsula.  

After passing the Yucatan peninsula, Edith reintensifies in the open waters of the Gulf of 

Mexico and became a hurricane yet again.  With a northeasterly track, Edith made 

landfall about 46 km east of Carmen, Louisiana.  

 At landfall, the highest sustained winds were recorded at 31 ms-1, gusting to  

43 ms-1.  Storm surge values were reported up to 2.45 m.  Total damage was estimated at 

$25 million.  



www.manaraa.com

 

 13 

Carmen 1974 (Hope 1975) 

Hurricane Carmen started as an easterly wave, which moved off the African coast 

on 23 August 1974 and became a depression on 29 August.  During its westward track 

south of Puerto Rico Carmen strengthened, however, intensification was not rapid due to 

the lack of low-level inflow whilst over Hispaniola and eastern Cuba.  Mean sea-surface 

temperatures were actually below normal but were above the developmental threshold 

value of 27˚C, set by Palmén (1948).  

 Carmen approached the Yucatan Peninsula on 2 September and began to rapidly 

develop due to warm Caribbean Sea temperatures coupled with favorable outflow aloft.  

Pressure readings fell to 928 mb with wind speeds near 67 ms-1 just before impacting 

Belize.  Carmen weakened after passing over Belize but soon regained strength when it 

moved over the warm waters of the Gulf of Mexico on 5 September.   

Hurricane Carmen made landfall on the Louisiana coast on 8 September and 

quickly weakened due to cool, dry air being added to the system from a low pressure 

system near Texas.  Carmen affected the sugar cane industry due to flooding rains, 

impacted the shrimp industry, and cost the off shore oil installations millions of dollars.  

Total damages were estimated near $150 million.  

Eloise 1975 (Hebert 1976) 

 A visibly unimpressive disturbance developed off the African coast on 6 

September, although soundings indicated a stronger lower-level cyclonic rotation.  Before 

being named a depression on 10 September, this system moved across the Atlantic at 13 

knots with an increase in organization, based upon ship records and satellite images.  
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Despite the next six days, where wind direction fluctuation aloft inhibited significant 

intensification, Eloise was named a tropical storm on 16 September.  After trekking 

across Hispaniola and Cuba, and weakening to minimal tropical storm strength, Eloise 

did begin to gain strength and intensity as it neared the Yucatan peninsula on 20 

September.  A deep upper-level trough enhanced outflow aloft and hurricane status was 

given to Eloise by morning on 22 September. 

 Hurricane Eloise strengthened over the warm Gulf of Mexico waters and made 

landfall between Fort Walton Beach and Panama City, Florida at 1200 UTC.  At landfall, 

Eloise had a minimum central pressure of 955 mb with sustained winds at 57 ms-1, 

gusting up to 70 ms-1.  The diameter of the eye of the storm was 44.45 km and maximum 

storm surge values ranged between 3.66—4.88 m on the Florida coast. 

Frederic 1979 (Hebert 1980) 

 A benign wave left the cost of Africa on 27 August 1979.  The wave quickly 

began rotating by 29 August and a tropical depression was formed.  Thirty hours later 

tropical storm Frederic was named.  Continuing directly westward at 9.3—10.3 ms-1, 

Frederic had been upgraded to a hurricane by 1 September.  Despite rapid development 

during the early stages of this system, the lingering atmospheric outflow from hurricane 

David impeded further intensification as Frederic neared Hispaniola.  Also, as Frederic 

encountered island after island, the system slowed, lower level circulation was disrupted, 

and Frederic was reduced to depression stage again.  Frederic maintained its westward 

direction and, as it moved south of Cuba, was uninhibited in the open waters.  At this 

point, Frederic began to strengthen, and on 7 September, regained tropical storm status.  
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Turning slightly to the northwest, Frederic encountered a very warm SST, between 29—

30°C, and established strong anticyclonic rotation in the upper levels, thus, Frederic 

became a hurricane again on 10 September.  Continuing a more northward track, Frederic 

made landfall on Dauphin Island, Alabama on 13 September at 0300 UTC.  

 Upon landfall, records show a central pressure of 946 mb and winds estimated at 

59 ms-1.  Maximum storm surge heights were 2.44—3.66 m from Pascagoula, 

Mississippi, to western Santa Rosa Island; within Mobile Bay, maximum storm surges 

ranged from 2.13 m on the east side to 3.96 m along the middle to western shore.  

Frederic caused over $2 billion in damages, spawned a number of tornadoes, and caused 

the evacuation of nearly 250, 000 persons.  

Allen 1980 (Lawrence and Pelissier 1981) 

 Hurricane Allen started as a typical wave off the African coast, one unique 

characteristic of this storm was the fluctuation in intensity during its lifetime (Figure 2.1).   

From storm genesis until landfall, Allen managed to maintain steady movement and keep 

the storm center over water.  Allen moved at a speed ranging between 9.3—11.3 ms-1.  

When Allen was centered over Cuba, it began to slow in speed.  The slowing was 

associated with a strong low pressure off the southeastern United States.  As Allen moved 

through the Yucatan channel, pressure reading fell to 899 mb.  The pressure rose to 916 

mb as the storm moved into the Gulf of Mexico.  Upon landfall, Allen had a central 

pressure of 945 mb and wind speeds of 51 ms1.  Winds gusted up to 54 ms-1 in Port 

Mansfield where there was also a storm surge of 3.66 m.  
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Figure 2.1   Hurricane Allen; Pressure vs. Time 
 

 

Alicia 1983 (Case and Gerrish 1984) 

 An area of low pressure moved off the Mississippi and Alabama coasts on 14 

August 1983 and primed the atmosphere over the Gulf of Mexico for what was soon to be 

Hurricane Alicia.  With high environmental pressures surrounding the developing system, 

the storm remained rather small in size.  Hurricane Alicia was a slow-moving storm that 

made landfall 40 km southwest of Galveston, Texas.  Wind speeds were above 42 ms-1 

with a pressure at landfall of 962 mb.  Resulting storm surges ranged between 0.6—4 m 

form Corpus Christi, Texas to San Luis Pass, Louisiana.   

Diana 1984 (Lawrence et al. 1985) 

 Diana began as a developing low pressure system north of the Bahamas during 

early September 1984.  After wind reports of 18 ms-1, on 8 September, the storm was 

named.  Within the next 24 hours, Diana intensified to hurricane strength and started 
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moving to the north-northwest, parallel to the Georgia/South Carolina coast.  Figure 2.2 

and Figure 2.3 show the progression of Diana as it followed the coastline.    

 

 

 
 

Figure 2.2   1700 UTC 10 September 1984 GOES-West Visible Satellite Image 
 
 



www.manaraa.com

 

 18 

 
 

Figure 2.3   1900 UTC 11 September 1984 GOES-West Visible Satellite Image 
 
 

Hurricane Diana continued to intensify over the next two days, strangely turned 

out to sea, then looped back and made landfall near Cape Fear, North Carolina at 0700 

UTC on 13 September.  This unusual track can be seen in Figure 2.4 below.   
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Figure 2.4   Track of Hurricane Diana’s Eye from 11—13 September 1971 
 
 

 

Upon landfall, central pressure was 949 mb and maximum sustained winds were 

59 ms-1.  Resulting storm surge was 1.7 m at Carolina Beach, North Carolina. 

Elena 1985 (Case 1986) 

 A well-organized cloud pattern moved off the coast of Africa on 23 August 1985.  

The dry Saharan air surrounding the storm and the fast moving speed of the system, did 

not control, or inhibit, formation of this storm.  On 28 August Elena was named as it 

passed over Cuba tracking northwest towards the Gulf of Mexico.  With collapsing 

steering currents and high pressure building in over the eastern United States, Elena made 

an erratic clockwise track, seen in Figure 2.5, near Cedar Key, Florida, which caused it to 

weaken slightly.   

 



www.manaraa.com

 

 20 

 
 

Figure 2.5   Hurricane Elena’s Track Prior to Landfall 
 

 

Then, Elena looped back towards the central gulf coast and made landfall near 

Biloxi, Mississippi with a central pressure of 959 mb, sustained wind speeds at 47 ms-1, 

and gust up to 61 ms-1.  Elena caused the largest evacuation to date, nearly one million 

individuals, and is said to be the reason for so few fatalities and injuries; only four deaths 

were reported (attributed to falling trees), and no deaths were reported in the areas of 

landfall.  In contrast to the number of injuries, total damage costs were near $1.25 billion. 

Gloria 1985 (Case 1986) 

 A disturbance, soon to become Hurricane Gloria, began off the African coast on 

15 September 1985 and became a tropical depression near Cape Verde on 16 September.  

Gloria continued as a tropical storm of minimal strength for five days before being 

upgraded to a hurricane on 22 September.  Due to the recent passing of tropical storms 
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Fabian and Henri, a weakness developed in the western half of the relatively strong 

subtropical high.  Gloria maintained its westerly track along the southern portion of the 

subtropical high until encountering the area of weakness left by tropical storms Fabian 

and Henri, and began on a northwesterly track.  Having few environmental inhibitors 

allowed for Gloria to strengthen and reach the lowest recorded pressure over the Atlantic 

of 919 mb on 25 September.  During its northward track, Gloria began to weaken and 

made landfall on the Outer Banks of North Carolina on 27 September with a central 

pressure of 942 mb.  Since the storm made a south to north approach, the strongest winds 

stayed well off shore, and due to frictional effects of the land, Gloria weakened and 

began to accelerate along the New England coast before become extratropical over Maine 

on 28 September.  

Hugo 1989 (Case and Mayfield 1990) 

 A cluster of thunderstorms made its way off the coast of Africa on 9 September 

and became a tropical storm by 11 September and named a hurricane the 13 September.  

The subtropical high pressure developed a bit of weakness as a low pressure system 

began to form north of Puerto Rico.  Here, Hugo shifted from due west to north-

northwest.  After moving over Guadeloupe on 17 September, Hugo showed signs of 

weakening with pressure readings rising.  This brief encounter with land, however, did 

not hinder future intensification.  By 19 September the weakness in the subtropical high 

subsided and Hugo, again under the steering influence of the ridge, was moving 

northwest.  On the 21 September, Hugo gradually steered more northward, in response to 

low pressure system moving southeast off the Georgia coast, and reintensified.  On 22 
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September, Hugo made landfall at Sullivans Island, South Carolina, near Charleston, with 

a central pressure of 934 mb and sustained winds at 62 ms-1.   

Storm surge reports for this storm were sparse, but readings as far north as 

Hatteras, North Carolina indicated storm surge values to be 1.2 m above predicted tide 

levels.  Forty-nine fatalities were associated with Hugo, along with nearly $7 billion in 

damages; as of that time, this was the costliest hurricane in United States history.   

Bob 1991 (Pasch and Avila 1992) 

 Unlike many hurricanes, Bob started as a disturbance near Bermuda.  When a 

weak surface low developed east of the Bahamas, cyclonic circulation of low clouds 

developed.  A depression formed on 16 August and intensified to a tropical storm that 

day.  A deep area of convection formed and Bob became a hurricane on 17 August and 

was nearly 400 km from Daytona Beach, Florida.  With the combination of a strong 

subtropical high and an upper-level trough over the southeast United States, Bob began to 

veer to the north and increase in speed.  An intensifying Bob, with a well defined eye, 

passed less than 100 km off the Cape Hatteras coast.  Bob continued to move parallel to 

the eastern coast as a category 3 storm.  As it passed New York and reached cooler 

waters, Bob began to weaken and was only a category 2 storm at landfall on Rhode 

Island.  After passing Rhode Island and Massachusetts, Bob continued to weaken.  

 At landfall, Bob had a central pressure reading of 964 mb, sustained wind speeds 

of about 45 ms-1 were reported, with gusts up to 55 ms-1.  High water marks were reported 

between 3.1—5m.  It was noted that these heights were a result of the exposure to the 

coast.  It was also reported that the surge occurred almost two hours after Bob made 
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landfall.  Power was lost for an estimated 2.1 million homes and businesses.  The total 

cost of hurricane Bob was $1.5 billion.  This includes all damage from North Carolina to 

Maine.  

Andrew 1992 (Mayfeild et al. 1994) 

 On 14 August 1992, a tropical wave crossed the Atlantic and was steered toward 

to the west by a strong subtropical high.  Cloud bands associated with the wave began to 

take on a circulatory pattern and at 1800 UTC 16 August the tropical wave was officially 

recorded as a tropical depression.  Due to weakening upper-level shear, the tropical 

depression was able to grow to hurricane status.  At 1200 UTC, 17 August, Hurricane 

Andrew was named. 

 A strong upper-level low steered Andrew away from the Lesser Antilles and 

brought it into an environment with favorable southwesterly vertical wind shear.  Due to 

the strong southwesterly flow, Andrew was not able to maintain long periods of deep 

convection.  This allowed the central pressure to rise considerably and Andrew dropped 

back to tropical storm strength on 20 August.  Then, large environmental changes 

occurred, a decrease in upper-level shear due to a splitting low pressure system and a 

strong steering ridge from the east building in.  These changes caused Andrew to rapidly 

strengthen and reclaim hurricane strength on 22 August.  According to Mayfield, Avila, 

and Rappaport (1992), of the National Hurricane Center, this was this first hurricane to 

form from a tropical wave in nearly two years.  Rapid deepening occurred, according to 

Holliday and Thomspon (1979), when the central pressure dropped over 72 mb within a 

36 hour period.  Andrew was a category 4 strength storm as it passed over the northern 
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Bahamian islands on 22 August and due to the strong subtropical high, stayed on a due 

west course towards Florida.  The central pressure rose from 922 mb to 941 mb after 

passing over the Bahamas but soon reintensified as it moved over the warm Straits of 

Florida.  At 1010 UTC hurricane Andrew made landfall as a category 5.  Eyewall 

circulation became more vigorous as the storm moved onshore.  Boundary layer 

convergence, according to Mayfield, Avila, and Rappaport (1992), is the cause for this 

central storm strengthening at landfall. 

At landfall, on the Florida coast, Andrew had a recorded central pressure of 922 

mb, sustained wind speeds of 63 ms-1, gusting up to 76 ms-1, and storm surge heights over 

5m in Biscayne Bay.  Figure 2.6 is a schematic showing storm surge levels along the 

Biscayne Bar area.  
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Figure 2.6   Analysis and Representative Observations of Surge Values in Biscayne Bay 
 
 

 

 This was not the last of Andrew however.  Moving directly west, Andrew passed 

from Biscayne Bay, Florida over the southern Florida tip in four hours.  The pressure rose 

only to 950 mb and weakened only to a category 4 storm.  The storm began to turn 

gradually to the north and take on a more west-northwesterly track.  A surface mid-

latitude trough approached from the northwest and slowed Andrew to 4 ms-1.  Losing 

strength, Andrew made its second landfall at a category 3 storm and affected a sparsely 

populated town about 35 km west-southwest of Morgan City, Louisiana.  
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Smaller, yet still significant, storm surge reports of 1.5—2.4 meters were recorded 

in Louisiana.  All in all, damage exceeded the $20 billion mark in the United States with 

only fifteen deaths associated directly with the storm, but nearly 125,000 individuals 

were left homeless.   

Bertha 1996 (Pasch and Avila 1999) 

 A wave moving off the African coast developed into a weak area of circulation on 

3 July.  Tropical depression status was reached 2 days later and followed along the 

western periphery of the subtropical pressure ridge.  The storm strengthened to a 

hurricane 3 days later.  The track turned more northwestward and continued to 

strengthen.  The gradual shift to a north northwestward track, on the 10th and 11th, 

brought Bertha parallel to the Florida and Georgia coast.  The storm was starting to 

accelerate and weaken, but just 12 hours before landfall on the North Carolina coast it 

strengthened quickly. 

 At landfall, a pressure reading of 977 mb was observed and wind speeds were 

estimated at 46 ms-1.  Storm surge values ranged from 0.3-1.8 m.  Bertha damaged over 

5000 homes, forced the evacuation of 750,000 people and cost $135 million in insured 

property and cost $270 million in total damage.  

Fran 1996 (Pasch and Avila 1999) 

 A tropical wave formed off the west coast of Africa during the peak hurricane 

season on 22 August.  Deep convection and surface circulation allowed this storm to 

become a tropical depression one day later.  As this time Hurricane Edouard preceded 

Fran, and inhibited growth and intensification.  The tropical depression slowly moved 
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west over the next few days before being named a hurricane on 29 August, approximately 

800 km east of the Leeward Islands.  Hurricane Fran weakened to a tropical storm after 

passing the Islands and once again was impeded by the remains of Hurricane Edouard.  

Steering currents changed and put Fran on a west-northwesterly track and slowed the 

forward speed of the storm to 3 ms-1.  By 31 August Fran was once again a hurricane and 

the strong subtropical high allowed Fran to continue its west-northwest motion.  As Fran 

moved northeast of the Bahamas 4 September it reached a minimal central pressure of 

946 mb.  Fran made landfall on 5 September in Cape Fear area of North Carolina.  

 At landfall, a minimum pressure of 954 mb was recorded, maximum sustained 

winds were estimated at 51 ms-1, and a maximum gust was reported at 61 ms-1.  Water 

marks on buildings ranged from 2.7—3.7 m.  Roughly 4.5 million were left without 

power and hurricane Fran is responsible for $3.2 billion in damage.  

Georges 1998 (Pasch et al. 2001) 

A tropical wave formed on 13 September and 24 hours later became a well 

organized area of circulation.  A tropical depression was named 15 September and while 

maintaining a west-northwest track it became a hurricane only two days later.  Due to 

deep convection and a well defined eye Georges began to quickly intensify.  By 19 

September George became a category 4 hurricane with estimated surface wind speeds of 

69.5—77.2 ms-1.  On 20 September George weakened due to increased vertical wind 

shear, according to the Cooperative Institute for Meteorological Satellite Studies at the 

University of Wisconsin.  George made its first landfall in the Lesser Antilles on 21 

September.  Due to the frictional effects of Cuba and Puerto Rico, George never fully re-
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intensified.  George continued to weaken as it moved across the Dominican Republic.  

Once George moved into the Gulf of Mexico it began to strengthen once again.  George 

brushed across Key West and turned north-northwest and a surface high pressure in the 

Southeastern United States steered the storm towards the Mississippi coast.   

On 28 September George made landfall in Biloxi, Mississippi.  Wind speeds at 

landfall were estimated at 90 kt. and storm surge values range between 1.5—3.7 m.  

Estimated damage from George was $5.9 billion.  George became the most expensive 

disaster aid effort in 117 years with over $1 million spent from the American Red Cross.     

Floyd 1999 (Lawrence et al. 2001) 

 Hurricane Floyd started as a tropical wave off the Western African coast that 

became a tropical depression on 7 September.  A strong subtropical high steered the 

depression in a north-northwestward direction for two days before a being named a 

tropical storm 8 September.  Slowly Floyd strengthened to hurricane status by 10 

September.  A strong trough developed to the north and steered Floyd more westward 

towards to the central Bahamas.  Floyd started to turn more to the right, after passing near 

San Salvador and Cat Islands, headed north and paralleled the eastern Florida coast.  

Floyd then decreased in strength, due to the entrainment of dry air and an increase in 

lower level vertical shear, and increased in forward speed.  Floyd made landfall near 

Cape Fear, North Carolina early on 16 May.  

 The maximum intensity of hurricane Floyd was 70 ms-1 winds and a minimum 

pressure of 921 mb.  Maximum sustained winds at landfall were estimated at 43 ms-1 with 

maximum gusts up to 62 ms-1.  Maximum storm surge values were reported at 3.1 m.  A 
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total of $1.325 billion was reported for insured property and total damages were totaled at 

$4.5 billion.  An unusual fact about Floyd is the extreme amount of fresh water flooding 

caused by the storm.  

Isabel 2003 (Lawrence et al. 2005) 

 Between 1—5 September a tropical wave became an organized area of 

circulation.  Just six hours after being classified as a tropical depression, on 6 September, 

tropical storm Isabel had formed.  By 7 September Isabel became a hurricane and a 

strong steering subtropical high maintained Isabel on its westward track.  For the next 

three days Isabel strengthened and became a category 5 storm on 11 September with an 

estimated wind speed of 75 ms-1.  As the storm held close to the periphery of the 

subtropical high, it began to move north-northwest as it neared the United States coast.  

An increase in vertical shear acted to reduce the strength of Isabel to a category 2 storm.  

Although the size of the storm increased for the next two days, Isabel maintained its 

category 2 status.  

 Isabel made landfall near Drum Inlet, North Carolina on 18 September.  Wind 

speed at landfall was 46 ms-1 and storm surge values up to 2.5 m were recorded.  Storm 

surge caused a great deal of damage from North Carolina to Maryland.  Total damage 

was estimated at $3.37 billion.  

Charley 2004 (Franklin et al. 2006) 

 A tropical wave developed off the African coast on 4 August.  It was not until 9 

August that a well defined area of circulation was observed and a tropical depression was 

named.  One day later the depression became a tropical storm due to low wind shear and 
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good upper-level outflow.  Charley became a hurricane as it entered the Caribbean Sea 11 

August.  The storm took a northwestward track toward western Cuba.  Just before making 

landfall on the Cuban coast, Charley strengthened with wind speeds of 54 ms-1 recorded.  

Charley weakened slightly as it moved through the Straits of Florida.  Charley took a 

sharp directional change to southwest Florida due to an unseasonably strong deep layer 

trough over the eastern United States.  This steering mechanism sent Charley in a north-

northeastern direction; Charley intensified rapidly to a category 4 storm before making 

landfall on the southwast coast of Florida on 13 August.  Just 12 hours before landfall 

Charley’s eye became much smaller therefore considerably reducing areas affected by 

extreme winds.  

 Maximum sustained winds were near 67 ms-1 and Charley’s central pressure at 

landfall was 941 mb.  Because of the limited time extreme winds were experienced, 

storm surge values were fairly modest with a maximum surge of 2 m recorded.  Charley 

caused an estimated $15 billion in damage and, at its time, was the second costliest storm 

to hurricane Andrew.  

Ivan 2004 (Franklin et al. 2006) 

Ivan started when a closed surface-low moved off the African coast into the 

Atlantic on 31 August.  Within two days Dvorak satellite classifications determined a 

tropical depression had a formed.  Three days later, hurricane Ivan was born roughly 

1800 km east of the Windward Islands.  Ivan continued moving due wast and became the 

southernmost storm on record.  Ivan made landfall on Grenada, Jamaica, and the Cayman 

Islands.  As Ivan passed over each island energy was lost, but Ivan reached category 5 
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strength on three occasions.  After passing Jamaica and regaining category 5 strength, it 

was then, 12 September, that the peak intensity of Ivan was recorded; wind speeds were 

recorded at 75 ms-1 with a central pressure of 910 mb.  The subtropical high helped to 

steer Ivan northwestward into the Gulf of Mexico on 14 September.   

 Despite moving into an environment usually not conducive to hurricane 

strengthening, Ivan showed minimal signs of weakening before making landfall west of 

Gulf Shores, Alabama on 16 September.  At landfall, maximum wind speeds were 54 ms-

1 and storm surge heights ranged from 3 to 4.6 meters.  As of 2004, Ivan was the third 

costliest storm with estimated damage totals near $14.2 billion.  Also, Ivan was at 

hurricane status for ten days, not consecutively, which is the longest a storm has been at 

hurricane status since 1944. 

Jeanne 2004 (Franklin et al. 2006) 

 A benign wave moved off the African coast and headed west.  As it neared the 

Leeward Islands it became a tropical depression on 13 September.  With a strong 

subtropical high steering the storm, it continued to follow a west-northwest direction.  A 

tropical storm was named 24 hours later and made landfall on the Virgin Islands on 15 

September.  Prior to making landfall in the Dominican Republic, Jeanne reached 

hurricane status.  After losing hurricane status and nearly exhausting all energy over 

Hispaniola, Jeanne developed a new center out ahead of the main storm.  With a new 

center and a weakening subtropical high, Jeanne moved into the Atlantic, just north of the 

Bahamas.  Jeanne once again became a hurricane on 20 September.  By 23 September, 

Jeanne was moving quickly to the west due to a strong high pressure over the United 
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States.  With westward motion and with a presence of more warm water, Jeanne became 

a major hurricane 25 September.   

 Jeanne made its final landfall near Stuart, Florida.  Maximum wind speeds were 

estimated to be 54 ms-1 and storm surge values were just over 1 meter.  Total damage was 

estimated near $6.9 billion.  

Dennis 2005 (Beven 2005) 

 An early season storm, Dennis, started as a tropical wave moving off the African 

coast in late June.  This area of convection moved west and seven days later an area of 

organized circulation west to of the Windward Islands became a depression.  With 

changing direction to the west-northwest, the depression became a tropical storm and by 

7 September, hurricane Dennis was named.  Dennis rapidly intensified to a category 4 

storm over the open seas of the Atlantic but weakened to a category 3 storm after passing 

across Cuba.  In the Gulf of Guacanayabo, Dennis regained category 4 status and once 

again passed over Cuba.  The second landfall dramatically reduced Dennis’ intensity.  

After emerging in the Gulf of Mexico on 9 July Dennis reintensified and was moving 

north-northwest.  While in the Gulf of Mexico Dennis had reached a maximum wind 

speed of 125 kt, but dry air entrained into the hurricane weakened the storm just before 

landfall. 

 Dennis made landfall on Santa Rosa Island, Florida on 10 July.  Maximum wind 

speed at landfall was 54 ms-1 and storm surge values up to 2.13 m were recorded.  Figure 

2.7 below shows storm-induced tides versus time for different locations along the gulf 

coast.  Total damage was estimated at $1.115 billion.  
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Figure 2.7   Storm-induced tides (surges) for Hurricane Dennis plotted versus time for the 
stations along the Florida west coast and Apalachee Bay. (Image Courtesy of 
the TPC Storm Surge unit) 

 
 

Katrina 2005 (Knabb et al. 2006) 

 The origin of Katrina was rather unusual; it began when a tropical wave, a 

tropical depression, and a pre-existing trough combined.  A tropical depression, soon to 

be Katrina, formed on 22 August over the Bahamas.  Circulation became better organized 

and deep convection occurred overnight and tropical storm Katrina was born 24 August.  

Due to a strong area of high pressure over the Gulf of Mexico Katrina took a westward 

track from the Bahamas to the Gulf.  Katrina became a hurricane by 25 August and just 

hours later Katrina made its first landfall on the southeastern Florida coast as a category 1 

storm.   

Katrina spent a substantial amount of time over land, nearly raining itself out, and 

became a tropical storm before moving back into the open water of the Gulf of Mexico.  
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As the storm emerged in the southeastern Gulf, it was taking a west-southward track 

around the southern half of the strong area of high pressure.  This area of high pressure 

acted to reduce upper-level wind shear while supporting upper-level outflow needed for 

strengthening.  Over the next 48 hours, while moving more east-northeast, Katrina 

returned to hurricane status and quickly intensified to a category 5 storm.  During this 

time Katrina experienced an eye wall replacement and nearly doubled in size.  Just 18 

hours prior to landfall, rapid weakening occurred; this is possibly a result of the eye wall 

replacement, which disrupted the initial structure of storm.  

Katrina made landfall as a category 3 storm near Buras, Louisiana on 29 August.  

Wind speeds were estimated at 56 ms-1 and storm surge values were record breaking, 

almost 9.14 m.  Katrina became one of the costliest storms on record resulting in $81 

billion worth of damage, this according to an article written only 4 months after Katrina.  

Much later reports suggest that Katrina’s final damage was in excess of $200 billion.   

Rita 2005 (Knabb et al. 2006) 

 A wave of energy moved off the African coast on 7 September and moved across 

the Atlantic for the next ten days without much change.  After interacting with a pre-

existing storm system over Cuba, the tropical wave showed signs of circulation.  Due to 

decreased vertical shear and a strong upper- level trough, organization increased and a 

tropical depression formed on 18 September.  Within 24 hours a tropical storm had 

formed and was moving west-northwest from the Bahamas.  Rita was slow to gain 

strength and turn more westward as a result of the strong subtropical high.  Rita 

approached the Florida straights on the 20 September but did not have a well defined eye 
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and passed just south of the Florida Keys.  As Rita moved into the Gulf of Mexico it 

rapidly intensified and became a category 3 storm by 21 September.  Warm Gulf water 

and weak wind shear aloft enabled Rita to strengthen to a category 5 storm by 22 

September; at this time Rita was roughly 550 km southeast of the Mississippi River 

moving west-northwest.  Hurricane Rita’s diameter increased drastically after an eyewall 

replacement occurred.  Although internal structure had changed, Rita did not reintensify.  

However, weakening did occur due to temperature differences in the water and increased 

southerly winds aloft.  This caused Rita to weaken to a category 3 on 23 September.   

 Rita made landfall in between Johnson’s Bayou and Sabine Pass.  At landfall, 

Rita had wind speeds of 51 ms-1 and maximum storm surge values were recorded at 1.52 

m.  Resulting storm surge values were recorded miles inland and substantial flooding 

occurred.  Estimated damages were about $10 billion.       

Wilma 2005 (Pasch et al. 2006) 

Wilma, unlike many tropical systems, started rather unusually.  A large weather 

disturbance, instigated by an area of diffluent flow, developed in the Caribbean Sea.  By 

15 October, Dvorak satellite classification indicated a tropical depression had formed 

with an area of deep convection moving strangely to south-southwest.  Due to a weak 

steering flow in the Gulf of Mexico, it took two days for the tropical depression to be 

classified as a tropical storm.  On 19 October, the tropical storm made a sharp turn to the 

northwest and was set on a track for the Yucatan Peninsula.  Within 24 hours, Wilma 

went from a tropical storm to a category 5 hurricane. Reconnaissance aircraft indicated 
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record breaking measurements starting with the smallest eye with a diameter of 3.7 km 

and a record low pressure of 882 mb. 

 Wilma made her first landfall, as a category 4 storm, on 21 October on the island 

of Cozumel.  After crossing the Yucatan Peninsula, Wilma veered to the north-northeast 

and lost a considerable amount of strength, at this point it was barely a category 2 storm.  

Although there were fairly strong winds aloft, Wilma strengthened quickly to a category 

3 before making landfall on 24 October near Cape Romano, Florida.  At landfall, wind 

speeds were in excess of 51 ms-1 and recorded storm surge values ranged from 1.22—

2.74 m. It is noted, however, that higher storm surge values probably occurred in rural 

areas.  Wilma caused the largest power outage that south Florida had ever seen, with 98 

percent of users without power. Wilma became the third costliest hurricane at $20.6 

billion.  
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CHAPTER III 

DATA AND METHODS 

 
 The purpose of this study is to determine variability, if any, between storm surge 

heights and category 2, or greater, hurricanes with respect to location.  This study was 

conducted by: 

1) Determining study area 

2) Gathering hurricane data 

3) Reducing data set based upon hurricane track, surface observations, 

and availability of data 

4) Calculating differences of means between locations 

Study Area 

 The entire study area for this project follows the coastline from Eastport, Maine to 

Brownsville, Texas with four major divisions, thus creating five separate basins.  These 

delineations were determined based upon coastal concavity, geographic similarities, basin 

structure, and location of hurricane landfall.   

One of the main factors determining regions was location of landfall; this was to 

ensure that all storm surge data for a single storm fell within a single basin and were not 

split between two basins.  All locations affected by a category 2, or greater, storm, for 

which a storm surge value was recorded, were plotted by latitude and longitude.  This 
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spatial plot made it possible to identify exactly where data were recorded, and to define 

basins accordingly so that data do not over lap between basins.   

This plot was also used to determine if there existed any geographical features 

that could influence the storm surge height for that specific location.  Geographical 

features such as river inlets, small canals, or lakes can positively or negatively affect 

storm surge, and therefore, skew the overall distribution of storm surge data.  Only storm 

surge heights recorded for coastal locations were used for this study.  Figure 3.1 shows an 

example of data points that were purged from this study due to their location on a river 

inlet.  With the consideration of data overlap and elimination of non-coastal surge data, 

the final study area was determined.  The study area includes two major regions: the Gulf 

of Mexico region, divided into three basins, and the Atlantic region, divided into two 

basins (Figure 3.2).   
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Figure 3.1   Non-Coastal Surge Data Removed from Study 
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Figure 3.2   Study Area with Basin Delineations 

 
 

 

The first basin, the Western Gulf Coast Basin extends from the city of 

Brownsville, Texas, to Morgan City, Louisiana.  From Morgan City, Louisiana, to 

Apalachicola, Florida, is the Central Gulf Coast Basin and this delineates basin two.  The 

third basin, the Eastern Gulf Coast Basin, is defined from Apalachicola, Florida, to Key 

Largo, Florida.  The fourth basin, the Southern Atlantic Basin, includes the eastern 

Florida coast from Key Largo, Florida, to Cape Hatteras, North Carolina.  The fifth and 

final subdivision, the Northern Atlantic Basin, includes the remaining coastal states from 

Cape Hatteras to Eastport, Maine. 
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Hurricane Data 

 After determining the study area, data were acquired.  All land-falling hurricanes 

during 1969–2005, with a Saffir-Simpson categorical ranking of 2 or greater, were 

identified.  Then, the annual Atlantic hurricane summary, issued in the Monthly Weather 

Review, was collected for corresponding years, in which the above criteria are met.   

 In order to maintain the integrity of this project, and the data therein, specific 

criteria were used to ensure that the most accurate storm surge data were used and that 

the data were consistent throughout the entirety of this study.  These criteria include: 

1) Locations must be affected directly by a land-falling storm  

2) Each storm must have at least five locations with recorded storm surge or storm 

tide values 

3) Storms must have at least one location with both storm surge and storm tide 

values 

As a result of the second criterion, many storms cannot be used for the purpose of this 

research because storm surge data are not available.  

Hurricane Tracks 

 Hurricane tracks were viewed for all storms category 2, or greater, in order to 

determine where hurricanes made direct landfall.  Locations that reported storm surge 

from indirect landfall, or sea-falling hurricanes, were excluded.  For example, the detailed 

summary for Hurricane Frances, has more than five locations with storm surge reports; 

however, less than five of these reports are for locations on the eastern Florida coast, 

where Frances made initial land fall.  Most reports are from western Florida, which is 
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considered sea-falling data, thus, Frances was removed from this study.  Subsequently, 

the third basin, the Eastern Gulf Coast Basin, has fewer storms because most storm surge 

reports made in the Eastern Gulf Basin are a result of hurricanes that made landfall on the 

Atlantic coast of Florida and crossed the state from east to wast.  

Surface Observations 

Reviews of the surface observations, found in Monthly Weather Review, were 

conducted in order to gather storm surge or storm tide data.  The detailed meteorological 

data, located in the annual storm summaries for each storm, include the following surface 

observations: specific city and state location, pressure (with corresponding date and 

time), sustained wind speed, peak gust (with corresponding date and time), storm surge, 

storm tide, and total rainfall.  All of this information is given in table form in the 

Appendix, which shows the meteorological data tables, from Monthly Weather Review, 

used for every storm in this study.  It was found, however, that many storms lack 

adequate storm surge data or enough storm surge data to provide confident results.  So, in 

order to maintain the accuracy of the results, only storms having a minimum of five 

locations with storm surge or storm tide data were used for this study.  

Storm Surge Data 

 With the final 28 hurricanes determined, storm surge data were collected or 

estimated. This study requires the comparison of storm surge data and not storm tide data, 

hence the acquisition of actual storm surge data is most important.  Referencing the 

annual storm summaries, many storm records lack sufficient storm surge data but provide 

ample storm tide, which can be used to estimate storm surge values.  Nevertheless, in 
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order to maintain the accuracy of the results, actual storm surge data are ideal.  Therefore, 

it was important to first attempt to locate actual storm surge data for locations that were 

not recorded in the Monthly Weather Review; this resulted in contacting specific 

individuals within agencies associated with the collection of hurricane data.   

 First, the NOAA/NWS/NCEP/TPC/National Hurricane Center Science and 

Operations Officer (SOO) was contacted via email regarding the whereabouts of storm 

surge data.   According to the NHC SOO, “There does not exist at this point a storm 

surge height database.”  Despite the lack of storm surge data available from a single 

database, there are efforts by Florida International University Hurricane Center to 

develop this database in the near future (Landsea 2006, personal comm.).  The NHC SOO 

advised the use of the annual storm summaries in the Monthly Weather Review to locate 

storm surge data. 

   Without a homogeneous database and Monthly Weather Review storm summaries 

lacking adequate storm surge records, a more localized search was necessary.  Local 

NWS offices were contacted in search of additional storm surge data for specific storms 

affecting that particular location.  For many locations, responses would lead back to the 

annual storm summaries.  Some would suggest additional literature written for specific 

storms and recommend contacting the author’s of these papers.  Unfortunately, additional 

research is generally conducted for well-known storms, or record-breaking storms, so 

every category 2 or 3 storm that has made land-fall may not have the same, or even 

similar, documentation.   
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 With so little storm surge data available, it was necessary to take the storm tide 

data that were given in the annual storm summaries, found in the Monthly Weather 

Review, and calculate surge height.  According to the National Oceanic and Atmospheric 

Administration (NOAA) glossary, storm tide is the combined effect of storm surge, 

existing astronomical tide conditions, and breaking wave setup 

(http://www.csc.noaa.gov/rvat/glossary.html).  For this reason, tide information was 

needed to determine surge heights, however, these data are not readily available for many 

locations from agencies/organizations responsible for data collection and recording.   

 After contacting the NOAA, National Ocean Service Oceanographer/Analyst, it 

was determined that all tide data that are available can be found in the on-line records.  

Only under certain circumstances, where a location has been recording data for many 

decades, are the earlier data found in an in-house database.  Unfortunately, tide data 

available through NOAA’s Tides and Currents website 

(http://tidesandcurrents.noaa.gov/) were not useful in this study, due to incomplete or 

inconsistent records.   

 Attempts to locate either storm surge or tide data continued with researchers 

within the Hurricane Research Division of the National Hurricane Center.  Here, a 

number of researchers were questioned, but nobody could offer help finding data.  

Finally, the storm surge data search came full circle when a researcher from the National 

Hurricane Center sent the storm surge request to the only individual expected to know 

how to acquire these data, the NOAA/NWS/NCEP/TPC/National Hurricane Center 

Science and Operations Office.  
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Storm Surge Estimations 

Since Monthly Weather Review storm records lack sufficient storm surge data and 

attempts to gather actual storm surge data from other agencies proved unsuccessful, 

although not ideal, it was possible to estimate storm surge given the storm tide data.  The 

estimations were made by taking the given storm tide height and subtracting the 

astronomical tide, this results in an estimated storm surge height for a location.  

At this point, without specific storm surge data or astronomical tide information 

for many locations, the average high and low tides were estimated for each location.  

Tidal information was found in the Geodetic Survey making it possible to use 

interpolation, along with the mean tides, to estimate specific tide, and thus, estimate 

storm surge.   

In order to accurately interpolate the astronomical tide, a storm’s record must 

contain at least one location with both a storm surge and storm tide value.  Thus, storms 

having record of only storm tide, without any storm surge data, were removed from this 

study.  

Storm surge estimations begin with a location having both storm surge and storm 

tide data.  The storm surge value is subtracted from the storm tide to determine the tide 

height for that particular time at that specific location. Then, it is determined where the 

tide occurs, between high and low tide, based upon the information given by the Geodetic 

Survey.  Using this information, and simple interpolation, it is possible to determine the 

tide at locations with recorded storm tide data.   
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For example: 

1) Both a storm surge and storm tide value must be given for a location. 

2) By subtracting the storm surge from the storm tide, a tide value is determined 

for that location. 

3) From the mean tide data given by the Geodetic Survey, it is determined 

whether the tide value calculated in Step 2, occurred at high or low tide. 

4) For locations not having surge data, but having storm tide data, interpolation 

is used to calculate storm surge. 

5) Since it is determined in step 3 when the tide occurred at one location (i.e.: 

high-high, high, low, or low-low tide) it can be assumed that other cities 

nearby have the same tide occurring at that time. 

6) Subtracting the mean tide value for locations, at said tide, from the storm tide 

value, the storm surge can be estimated.  

Statistical Analysis 

After gathering, or estimating, all the storm surge data, storm surge averages were 

calculated for each storm using the 5 highest storm surge values.  First, the average of the 

5 storm surge values for each storm was calculated.  Theses averages were compared 

between basins and a difference of means were calculated.  Likewise, an average of three 

surge values were calculated; these three values include the maximum storm surge for a 

storm and the two surge values, one to the right and one to the left, closest to the max 

surge location.  Then, all maximum storm surge values were compared between basins 

with a difference of means calculated.  Next, an average storm surge value for the same 
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category storm within one basin was compared to average storm surge value for the same 

category storm in another basin. For example, all storm surge values for category 2 

storms in Basin 1 were averaged then compared with the average storm surge value for 

all category 2 storms in Basin 4.  Finally, an average of all storm surge values for one 

category storm were averaged for each region and a comparison made between the 

difference in means between the Gulf Coast Region and East Coast Region.   
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CHAPTER IV 

RESULTS 

 
 The purpose of this project is to test for variation in storm surge heights for like-

category storms between the Gulf Coast Region and the Atlantic Coast Region.  Since the 

most damaging part of a hurricane is storm surge (Hoover 1957), not wind, which 

singularly defines the Saffir-Simpson hurricane scale, it is important to understand 

variables that contribute to storm surge heights.  Henceforth, the categorical ranking of a 

hurricane can be misleading as to potential damage that could occur from that storm.   

 Although there are several variables that can be studied for this topic, the focus of 

the project is geography.  It is important to compare storm surge heights for different 

locations struck by storms with the same category in order to better identify coastal 

similarities that influence storm surge.  Results do indicate that there is variation in storm 

surge height between the Gulf Coast Region and the Atlantic Coast Region for like-

category storms.  Results also show a small variation in storm surge heights between 

storms of different categories for the Atlantic Coast Region; the Gulf Coast Region, on 

the other hand, has a greater variation in storm surge heights between categories.  

Results show that category 2, 3 and 5 storms produce significantly higher 

maximum storm surges in the Gulf Coast Region than the Atlantic Coast Region.   
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Conversely, storm surge heights resulting from category 4 storms are, on average, 

slightly higher in the Atlantic Coast Region.  These results can be seen in Figure 4.1. 
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Figure 4.1   Mean Maximum Storm Surge per Basin for Category 2, 3, 4 and 5 
Hurricanes 

 
 
 
 

When adding surge values that occurred to the right and left of the location of 

maximum surge with the maximum surge value, results are similar, although not as 

impressive.  Figure 4.2 below shows a similar plot to Figure 4.1.  This plot also shows 

that there is a very small surge height variation between categories for basin 4 storms.  

Interestingly, category 5 storms in basin 4 actually had the lowest storm surge heights.  

The difference in storm surge heights between category 2, 3 and 5 storms in basin 4 was 

less than 0.10 m.  Category 4 storm surge heights were just less, or right at, 1.0 m 

difference from the category 2, 3 and 5 surge averages.  
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Figure 4.2   Center 3 Storm Surge Mean per Basin for Category 2, 3, 4 and 5 Hurricanes 
 

 

A similar plot is produced, Figure 4.3, when averaging the top 5 storm surge 

heights. Both Figure 4.2 and Figure 4.3 are beneficial because they act to validate the 

initial findings found in Figure 4.1.  There is not a substantial difference in these plots, 

other than that more storm surge values lower the overall storm surge height.  In basin 3, 

there was not enough data to include category 4 storms for comparison.  
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Figure 4.3   Top 5 Storm Surge Mean per Basin for Category 2, 3, 4 and 5 Hurricanes 

 

Category 2 

When comparing regions, Gulf Coast to Atlantic Coast, the results in Table 4.1 

show that for category 2 storms there is a higher maximum storm surge average for the 

Gulf Coast Region, as well as the mean of the top 5 surge values and the center 3 mean.  

 

Table 4.1   Category 2, Mean Surge Heights Gulf Coast Region and Atlantic Coast 
Region 

 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Gulf of Mexico Region 

(Basin 1, 2, & 3) 

2.23 1.98 2.07 

Atlantic Coast Region 

(Basin 4 & 5) 

2.13 1.82 1.78 
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 When comparing storm surge heights between basins, results show that basin 2, 

Central Gulf Coast Basin, has, on average, a higher storm surge than basin 4, Southern 

Atlantic Coast Basin, and basin 5, Northern Atlantic Coast Basin.  Although results do 

indicate a higher maximum storm surge occurs in basin 2, it is only 0.49 m higher than 

basin 4, and only 0.66 m higher than basin 5. The top-5 mean and center-3 mean are 

almost 1.00 m greater in basin 2 than both basins 4 and 5.  Surge height averages for 

basin 1 were lower than any other basin.  These results can be seen in Table 4.2 below.   

 

Table 4.2   Category 2, Mean Surge Heights Basin 1, 2, 3, 4 and 5 
 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Basin 1 1.77 1.33 1.47 

Basin 2 2.70 2.62 2.27 

Basin 3 ─ ─ ─ 

Basin 4 2.21 1.73 1.56 

Basin 5 2.04 1.91 2.00  

 

Category 3 

When comparing regions, Gulf Coast to Atlantic Coast, the results in Table 4.3 

show that for category 3 storms there is a higher Maximum, Top 5 Mean and Center 3 

Mean storm surge average for the Gulf Coast Region.  On average, storm surge heights 

are 1.5+ m greater in the Gulf Coast Region than the Atlantic Coast region. 
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Table 4.3   Category 3, Mean Surge Heights Gulf of Mexico Region and Atlantic 
Coast Region 

 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Gulf of Mexico Region 3.15 2.50 2.77  

Atlantic Coast Region 1.71  1.19  1.48  

 

 

With the removal of anomalous Katrina (2005), the results still indicate a greater 

storm surge in the Gulf Coast Region, more specifically basin 2, than the Atlantic Coast 

Region.  In fact, there is only a variation, on average, of less than 0.5 m; these results are 

shown below in Table 4.4.   

 

Table 4.4   Category 3, Mean Surge Heights Gulf of Mexico Region and Atlantic 
Coast Region, Without Katrina (2005) 

 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Gulf of Mexico Region 2.86  2.26  2.52  

Atlantic Coast Region 1.71  1.19  1.48  

  

 

Comparing variations in storm surge height between basins, results in Table 4.5 

show that basins 1, 2, and 3 are much greater than basins 4 and 5.  The basin with the 

highest overall average is basin 2.  The drastic difference in storm surge height averages 

between basin 2 and other basins could be the simple fact the Hurricane Katrina (2005), a 
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category 3 storm at landfall, fell in the Central Gulf Coast Basin, or basin 2.  The bolded 

and italicized values, in Table 4.5, are storm surge averages without Katrina (2005).   

 

Table 4.5   Category 3, Mean Surge Heights Basin 1, 2, 3, 4 and 5 (*Surge Averages 

without Katrina (2005) Values) 
 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Basin 1 3.48 2.92 3.24 

Basin 2 4.30 (*3.44) 3.48 (*2.76) 3.75 (*3.00) 

Basin 3 1.67 1.1 1.71 

Basin 4 1.71 1.19 1.48 

Basin 5 ─ ─ ─ 

 

 

Category 4 

When comparing regions, Gulf Coast to Atlantic Coast, the results in Table 4.6 

show that for category 4 storms there is a higher Maximum and Center 3 Mean storm 

surge average for the Atlantic Coast Region.  Although the Atlantic Coast was higher on 

average, by just under 1.00 m for the maximum storm surge, it was only about 0.40 m 

differences when comparing the Center 3 Mean storm surge values.  Conversely, when 

comparing the averages of the top 5 mean, the Gulf Coast was only slightly higher, at just 

over 0.14 m than the Atlantic Coast Region.   
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A comparison between basins can be seen in Table 4.7 and due to the lack of 

land-falling storms in basin 5, the results for Atlantic Coast Region and basin 4 are the 

same.  There were 2 basins, 2 and 3, included for the Gulf Coast Region. 

 

Table 4.6   Category 4, Mean Surge Heights Gulf of Mexico Region and Atlantic 
Coast Region 

 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Gulf of Mexico Region  2.10  2.04  2.00  

Atlantic Coast Region 3.40 1.90 2.43  

 

 

Table 4.7   Category 4, Mean Surge Heights Basin 1, 2, 3, 4 and 5 
 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Basin 1 ─ ─ ─ 

Basin 2 2.40 2.04 2.12 

Basin 3  1.80  ─ 1.80  

Basin 4 3.40 1.90  2.43  

Basin 5 ─ ─ ─ 

 

Category 5 

When comparing regions, Gulf Coast to Atlantic Coast, the results in Table 4.8 

show that for category 5 storms there is a higher Maximum, Top 5 Mean and Center 3 
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Mean storm surge average for the Gulf Coast Region.  Due to the limited number of 

category 5 storms, only basins 1 and 4 were compared for this part of the study.  Thus, 

the results for region to region and basin to basin comparisons, seen in Table 4.9, are the 

same. 

 

Table 4.8   Category 5, Mean Surge Heights Gulf of Mexico Region and Atlantic 
Coast Region 

 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Gulf of Mexico Region 7.50 4.62  5.57 

Atlantic Coast Region 5.20 4.44 4.70 
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Table 4.9   Category 5, Mean Surge Heights Basin 1, 2, 3, 4 and 5 
 

 Maximum Surge Mean (m) Top 5 Mean (m) Center 3 Mean (m) 

Basin 1 ─ ─ ─ 

Basin 2 7.50 4.62 5.57 

Basin 3 ─ ─ ─ 

Basin 4 5.20 4.44 4.70 

Basin 5 ─ ─ ─ 

 

  

Furthermore, Figure 4.4 shows a distinct storm surge difference in storms making 

landfall in basin 2, the Central Gulf Coast basin.  When plotting intensity values for all 

storms in the Gulf Coast and Atlantic Coast region, the Central Gulf Coast Basin, basin 2, 

storms have noticeably higher surge values.  The maximum storm surge values for basin 

2 storms were still greater than some storms with higher intensities. 
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Figure 4.4   Maximum Storm Surge Height vs. Storm Intensity (at landfall) 
 
 

Figure 4.5 shows a positive, near linear, trend in the increase of wind to surge 

height.  The trend lines also indicate that there might be a slightly higher surge value in 

the Gulf of Mexico, but due to limited values, there is not significance here.  

Figure 4.5 shows the normalization of regions, but breaking the regions into 

basins, figure 4.6 shows the surge height trend, normalized values.  Even within the 

basins, similar results are found. Again, limited data affected the linear trend for basin 1 

and 3, as basin 1 shows a negative trend and basin 3 shows no rise or fall in height with 

increased wind speed.  The two basins with the most data points are basins 2 and 4 and 

both of those trend lines show positive trending with between surge height and wind 

speed.  
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Figure 4.5   Normalized Surge Values between the Gulf and Atlantic Regions 
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Figure 4.6   Normalized Surge Values between Basins 
 

  

Another interesting find was the height of storm surge per unit of wind speed.  

Figure 4.6 shows that basin 2 and 4 have the most noticeable change in height with the 
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increase in wind speed.  Basin 3 is not as impressive, but this is most likely due to the 

limited amount of surge data collected for this basin.  Although basin 1 shows a negative 

trend line, one storm could be skewing the overall data results. Of the 6 storms used for 

determining wind speed/surge relationship for basin 1, one storm with the maximum 

wind speed also had the lowest surge value. Without the inclusion of this one data point, 

the line would actually trend upward, very similar to basin 2 and 4.   

Although, there is an overall negative relationship between wind speed and surge 

in basin 1, based on Figure 4.6, basin 1 actually has the second highest normalized value 

seen in Figure 4.7.  Basin 4 ranks third in height change per meter per second of wind 

speed with basin 1 having the highest change in height with change in wind speed  

(Figure 4.7). 

 

 



www.manaraa.com

 

 61 

Wind Speed Normalized per Basin

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Basin

m
m

 /
 m

/s

 
 
Figure 4.7   Millimeter of Surge per Meter/Second Wind for Basin 1—5 
 
 

Statistical Analysis 

 Statistics further validate that there is a significant difference in storm surge 

heights between the Gulf Coast Region and the East Coast Region. The following tables, 

4.10 and 4.11, show the difference in means and p values for each basin comparison.  

Due to the lack of data for category 4 and 5 storms, only category 2 and 3 storms were 

used for statistical analysis.  The bolded and italicized values indicate statistical 

significance.  
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Table 4.10   Mean Differences and p Values Between Basins for Category 2 
 

  Maximum Top 5 Center 3  

Basin 1, 2, 3 and 4, 5 

Mean Difference 
 

p Value 

0.10 

0.48 

0.16 

0.61 

0.29 

0.55 

 

 

 

Table 4.11   Mean Differences and p Values Between Basins for Category 3 

  Maximum   Top 5  Center 3 Mean 

Basin 1 and 2 

Mean Difference 
 

p value 

0.82 
 

0.59 

0.56 
 

0.60 

0.51 
 

0.76 

Basin 1 and 3 

Mean Difference 
 

p value 

1.81 

0.94 

1.82 

0.72 

1.53 

0.90 

Basin 1 and 4 

Mean Difference 
 

p value 

1.77 

0.13 

1.73 

0.06 

1.76 

0.13 

Basin 2 and 3 

Mean Difference 
 

p value 

2.63 

0.65 

2.38 

0.49 

2.04 

0.75 

Basin 2 and 4 

Mean Difference 
 

p value 

2.59 

0.13 

2.29 

0.07 

2.27 

0.17 

Basin 1, 2, 3 and 4, 5 

Mean Difference 
 

p value 

1.44 

0.03 

1.31 

0.01 

1.29 

0.04 
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 The statistics do confirm the hypothesis, which is that there is a variation in storm 

surge heights between the Gulf Coast Region and the Atlantic Coast Region.  Starting 

with comparisons between basins 1, 2 and 3, there is no significance.  This is important to 

note, because basins 1, 2 and 3 are all within the Gulf Coast Region and there should be 

very little variation between averages for these areas.  On the other hand, when basins 1, 

2, and 3 were compared to basin 4, in the Atlantic Coast Region, the p values, although 

not significant by mathematical definition, do indicate there is a notable difference of 

averages between these areas.   

 After comparing averages from basin to basin, the averages of the entire Gulf 

Coast Region were compared to those of the Atlantic Coast regions.  Final results do 

show a significant difference between surge heights for the Gulf Coast Region and the 

Atlantic Coast Region. 

Summary 

 Although data are sparse for this study, inferences can still be drawn that there is a 

greater storm surge in the Gulf of Mexico than the Atlantic.  Referring to Figure 4.1, it 

does show that there is, especially in the Central Gulf Basin, a greater surge height in the 

Gulf Coast Region than the Atlantic Basin.  In addition, p values, found in Table 4.11, 

show that there is significant height difference between regions. However, when looking 

at Figures 4.5 and 4.6, even though there is still a slightly higher surge in the Gulf, the 

increase in surge values with wind speed is linear, with nearly an identical slope, for the 

Gulf and Atlantic Regions.  This might indicate that basins with a larger sample size 
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show a higher surge, when in fact the same linear increase between surge height and wind 

speed applies to most locations.  
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CHAPTER V 

CONCLUSIONS & DISCUSSION 

Conclusions 

 This study intended to show a variation in storm surge height between locations in 

the Atlantic Region and the Gulf Coast Regions, for like-category storms.  Although 

surge heights varied in different regions, results conclude that category 2, 3 and 5 storms 

produce a significantly higher storm surge in the Gulf Coast Region than the Atlantic 

Region, whereas category 4 storms have a higher surge in the Atlantic region.  

This study also found that the Atlantic Region experiences much less variation in 

storm surge heights between categories than the Gulf Coast Region.  The Atlantic Region 

recorded its lowest surge value at almost 1.0 m with the highest surge height recorded at 

a little over 5.0 m, whereas the lowest surge value in the Gulf Region is just over 1.0 m 

and the highest surge value recorded is nearly 7.5 m.  The variation in storm surge height 

in the Atlantic region is about 4.0 m, from category 2 to category 5 storms.  In the Gulf 

Region there is a 6.5 m variation in surge heights from category 2—5 storms.  

 Understanding these surge variations and geographical features that enhance 

storm surge is very important not only for scientist, but for any persons living on or near 

the coast.  Most coastal devastation from a hurricane is caused by storm surge (Hoover 

1957) and it is generally accepted that hurricane strength and storm surge height are 

directly proportional (Coch 1994).  The Saffir-Simpson scale categorizes storm strength 
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based solely upon wind speed (Saffir 1977; Simpson and Riehl 1981), and results from 

this study suggest that the uni-variable Saffir-Simpson scale is not directly proportional to 

storm surge heights.  The Saffir-Simpson hurricane scale reflects the strength of a 

hurricane over the ocean; however, the scale is less adequate in reflecting the effects of a 

hurricane on the coast at landfall because it does not take storm surge and other land-sea 

interactions into account (Bush 2001).  Thus, this scale can be a false representation of 

potential storm surge heights, leading to underestimated predictions and projections of 

potential damage to an area.   

Thus, it is important to understand the potential for damage due to storm surge, 

for a specific location, and not generalize potential storm damage strictly based upon a 

categorical ranking.  With rapidly growing coastal regions, each hurricane that makes 

landfall has the potential for significant damage and destruction (Pielke and Landsea 

1998).  Although some of the costliest hurricanes have been category 4 or greater, this 

does not denote that storms of lesser strength should be considered less destructive.  

Discussion 

 After concluding this study, additional research into various areas of this thesis 

would be useful for future research. 

1. As for data acquisition, having a detailed storm surge database would have made 

this study more efficient and possibly, it would have made the results more 

conclusive.  

2. After examining the results of this study and finding that, in general, the storm 

surge heights are greater in the Gulf Coast Region, future research could look at 
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specific variables that might cause this to occur.  Some of these variables could 

include, but are not limited to: 

a. Angle of Attack: Find the angle at which a storm makes landfall and 

determine if this impacts surge height. 

b. Storm origin: Was the storm genesis a tropical wave, Cape Verde storm, 

or was it a pre-existing storm system that intensified into a hurricane? 

c. Intensity Track: Did the storm continually strengthen or did it strengthen, 

then weaken, then reintensify? 

d. Location of Max Intensity:  Did the storm intensify directly prior to 

landfall or did it intensify in the open waters? Does location of maximum 

intensity play a role how storm surge affected? 

These questions or topics maybe helpful to further the examination into variables that 

affect or enhance storm surge.  
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